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NUMBERS HAVING m SMALL mth ROOTS mod p 

RAPHAEL M. ROBINSON 

In memory of my good friend Derrick H. Lehmer 

ABSTRACT. Here are two typical results about the numbers mentioned in the 
title: If p is a prime such that p =1 (mod 6) and p > 67, then there are 
exactly six numbers mod p, each of which has six sixth roots less than 2/3p 
in absolute value. If p is a prime such that p =1 (mod 8), then there is at 
least one number mod p which has eight eighth roots less than p314 in absolute 
value. 

1. INTRODUCTION 

Let m be a positive integer, and let p be an odd prime. In order that the 
congruence 

xm-a (mod p) 

should ever have m solutions, we need that 

p _ 1 (mod m). 

In this case, there are (p - 1)/m values of a (mod p) other than 0 for which 
the congruence is solvable, and there are m solutions in each case. We may 
represent these solutions by their absolutely least residues, so that all lie in the 
interval -p/2 < x < p/2. Such a set will be called a reduced set of mth roots. 

We are interested in finding such reduced sets of mth roots which lie in as 
small an interval -c < x < c as possible. Some results on this problem were 
presented at a meeting in 1984 and appear in the abstract [6], but the proofs 
have not previously been published. 

The problem is trivial for m = 1 and m = 2. There is also a very simple 
result for m = 4. It is known that any prime p _1 (mod 4) can be written 
as a sum of two squares, p = x2 + Y2. Since y2 = _X2 (mod p), we have 
Y4 = X4, so that the number x4 has four fourth roots ?x, ?y, all of which 
are less than vTp in absolute value. If I had thought of this example to begin 
with, it might have been the starting point for my investigations. But the actual 
starting point involved sixth roots, and is described at the end of ?4. 

Notice that if m is odd, and the solutions to xm =a (mod p) are xl, 
x2, ... , Xm , then the solutions to xm _ -a (mod p) are -xI, -x2, ..., -Xm, 

and the solutions to x2m = a2 (mod p) are ?xI, ?x2, ... , ?xm. The max- 
imum absolute value is the same in all cases. Thus, each number with all its 
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(2m)th roots in -c < x < c corresponds to two numbers with their mth roots 
in the interval. Hence the problem for m is equivalent to the problem for 2m 
when m is odd. In particular, the results for m = 3 follow from those for 
m = 6 given in ?3. 

The p - 1 numbers with 0 < Ixl < p/2 fall into (p - 1)/rm sets having equal 
mth powers. If m is even, then the maximum absolute values of the various 
sets are all different. For 1 < i < (p - 1)/m, let Mi(p) be the ith smallest 
maximum. (This also depends on m, but we omit this from the notation.) The 
ith set will contain both Mi(p) and -Mi(p). But if m is odd, we will let 
Mi(p) have the same meaning as for 2m, so that it will be defined only for 
1 < i < (p - 1)/2m. There will now be two sets with the maximum absolute 
value Mi(p), one containing Mi(p) and the other containing -Mi(p) . 

We showed above that Ml (p) < v/Ip when m = 4. Detailed information 
about Mi(p) for m = 4 and m = 6 is given in ??2 and 3. A connection with 
Jacobsthal sums is explained in ?4. Upper bounds for M1 (p) for other values 
of m are discussed in ??5 and 6. 

2. FOURTH ROOTS 

We shall study sets of small fourth roots mod p, where p is a prime with 
p 1_ (mod 4), by finding a connection between multiplying complex numbers 
by i and multiplying integers by a primitive fourth root t of 1 mod p. 

Let z be an element of the ring Z[i], and put z = x + yi, where x and 
y are integers. Then the points il z for n = 0, 1, 2, 3 have the coordinates 
(x, y), (-y, x), (-x, -y), (y, -x). Notice that the abscissas and ordinates 
run through the same four numbers ?x, ?y. 

Now suppose that z lies on the circle IZ12 = hp, where h is a positive 
integer. Then x2 + y2 = hp. If x 0 (mod p), then y- 0 (mod p), and 
hence h 0 (mod p) . If x f 0 (mod p), then we can solve 

tx -y (mod p) 

for t. This yields 

0_x2+y?2x2(l+t2) (modp); 

hence t2 = -1 (mod p) , so that t is a primitive fourth root of 1 modp . Notice 
that ty = -t2x x (mod p) . Thus, 

iz-tz (mod p). 

The points inz form the vertices of a square. The abscissas or ordinates con- 
stitute sets of fourth roots mod p. 

Will every reduced set of fourth roots mod p be equal to such a set of 
ordinates? Let y be one of the given fourth roots. Since p 1 (mod 4), 
we can solve x2 = -_y2 (mod p), and can make lxl < p/2. Then the point 
z = x+yi will lie on the circle IZ12 - hp for some integer h with 0 < h < p12. 
Draw the inscribed square with a vertex at z. The ordinates of the vertices form 
a reduced set of fourth roots. Since this set includes y, it must be identical to 
the given set. So every reduced set of fourth roots is a set of ordinates. 

We want to know what squares can be inscribed in the circle IZ12 - hp. We 
first ask about squares in IZ12 = h . If one vertex is at - = x + yi, then we need 

(x + yi)(x - yi) = h . 
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Each prime power in h must be split into two conjugate factors in Z[i]. It is 
known that primes q _ 3 (mod 4) remain prime in Z[i], that 2 is equivalent to 
the square of a prime, and that primes p _1 (mod 4) split into two conjugate 
prime factors which are not equivalent. Thus, primes q _ 3 (mod 4) must ap- 
pear in h to an even power. The only choices occur for primes q 1 (mod 4). 
If the power qv occurs in h, then we can decide in how many of the v cases 
we choose the first factor of q as a factor of x + yi, and then we must choose 
the second factor in the remaining cases. This gives H(v + 1) choices for x +yi 
when units are ignored, hence H(v + 1) inscribed squares. 

If h is not a multiple of p, then there will be twice as many squares in 
IZ12 = hp, or H(v + 1) pairs of conjugate squares. The early possible values of 
h and the corresponding number of pairs are as follows: 

h= 1, 2, 4, 5, 8, 9, 10, 13, 16, 17. 
Pairs = 1, 1, 1, 2, 1 1, 2, 2, 1, 2. 

Conjugate squares produce the same set of ordinates. No other square can 
produce this set. Indeed, every set of ordinates has the form {?x, ?y}. To 
produce this set of ordinates, the abscissa corresponding to the ordinate y can 
only be ?x. 

The maximum ordinate for a square inscribed in IZ12 = hp lies between 
h`p2 and hp. These intervals are nonoverlapping for h = 1, 2, 4. None 

of these values of h can be a multiple of p. Since each of the three corre- 
sponding circles contains one pair of conjugate squares, this tells us that there 
is exactly one set of ordinates less than /p, exactly two sets less than 2p, 
and at least three sets less than 2v/pi. In general, the intervals overlap, so that it 
is not possible to give exact counts. Now 2/p < p/2 if p > 8, and 2ApJ < p/2 
if p > 16, so that the sets of ordinates give reduced sets of fourth roots in 
these cases. When p = 13, all three reduced sets of fourth roots are less than 
2#/fp. Hence, for p 1 (mod 4) there is always exactly one reduced set of 
fourth roots less than vJpj, and when p > 5 there are exactly two sets less than 

IP and at least three sets less than 2#p. 
For 1 < i < (p - 1)/4, we let Ml(p) be the ith smallest maximum of 

a reduced set of fourth roots. This will be studied by its relation to N1(p), 
defined for all i > 1 as the ith smallest maximum of a set of ordinates. Since 
the reduced sets of fourth roots are identical with the sets of ordinates which 
are less than p/2, we see that Mi(p) = N1(p) whenever M1(p) is defined. We 
will have N1(p) < p/2 just when i < (p - 1)/4. 

The prime p 1_ (mod 4) splits in the ring Z[i] in the form p = PP, where 
P is a prime in the ring. The squares inscribed in IZ 12 = hp are obtained from 
the squares inscribed in IZ12 = h by multiplying by P or P. By a basic square, 
we shall mean a square with center at 0 and vertices in the ring. If we start with 
all the basic squares, and expand and rotate by the factors P and P, we obtain 
all the squares inscribed in circles IZ12 = hp. But we do not need both a square 
and its conjugate, so it is enough to use the factor P. This causes an expansion 
by the factor J/pj, and a rotation. Hecke [2, ?9] proved that there are primes 
P in every sector. Hence, when we consider all primes p- 1 (mod 4), the 
possible rotations caused by multiplying by P are everywhere dense. 

Let ai be the smallest positive number so that for some rotation of the 
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complex plane, there will be i of the basic squares lying in the strip y2 < a1. 
Let /3s be the smallest positive number so that for every rotation of the complex 
plane there will be i of the basic squares lying in the strip y2 < /i. Then it 
follows from the above construction that 

a, < N (p)2/p < /3, 

and that the bounds ai and /i are the best that will hold for all values of pr. 
The bound ai will be obtained for a rotation of the plane which places more 

than one vertex of the squares used at the maximum height. For otherwise, 
a small rotation would reduce the maximum height. The bound /3i will be 
obtained in a similar case, or when there is just one vertex with maximum 
height, but it lies on the imaginary axis. For if there were just one vertex at 
maximum height, and it were not on the imaginary axis, a small rotation would 
increase the maximum height. On the other hand, if there are two vertices at 
the maximum height, we may not need both squares, since there may be i + 1 
squares in the strip used. Even if a rotation increases the height of one of the 
vertices, it may decrease the maximum height used. 

In writing a program to compute ai and /Bi, it is more convenient to consider 
supporting lines with various orientations rather than rotating the plane. We 
need to know what possible supporting lines must be examined. This depends 
on knowing what basic squares we need to consider. 

Notice that every basic square whose vertices satisfy 

max(IxI, lYi) < j 

is contained in every basic square whose vertices satisfy 

max(lxI, lIY) > 2j. 

Indeed, the vertices of the latter square will be at a distance > 2j from the 
origin; hence its sides will be at a distance > (v/i)j from the origin. 

There are (2j + 1)2 lattice points satisfying the first condition, hence j(j + 1) 
basic squares having these points as vertices. Thus, the values of ai and /3i 
for i < j(j + 1) will be found without using any squares from the second set. 
Hence, we need only look at the 2j(2j - 1) basic squares with 

max(IxI, LIY) < 2j- 1. 

Table 1 gives the values of ai and 3,i for i < 80, which were computed in this 
way. 

There are two special cases which will be discussed. In the unrotated plane, 
there are j(1j + 1) basic squares with ordinates not exceeding j . It follows that 

(i<j2< /3 forj(j- 1) <i<j(j+1). 

Table 1 shows many cases of equality on the right near the beginning of the 
interval, and on the left near the end. It can be shown that equality holds for 
at least one value of i at each end: 

/3 = j2 for i = j(j - 1) + , 

ai = j2 for i = j(j + 1). 
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TABLE 1. Fourth roots 

ai a. 1 i As 
1 1/2 1 41 36 41 84/101 
2 1 2 42 36 42 15/17 
3 2 4 43 40 1/2 49 
4 3 1/5 4 1/2 44 40 1/2 49 
5 4 5 45 40 1/2 49 
6 4 6 2/5 46 44 1/10 50 
7 6 3/13 9 47 45 50 
8 7 2/17 9 48 45 50 
9 8 9 4/5 49 47 49/61 51 1/5 
10 8 10 6/25 50 48 1/13 51 1/5 
11 9 12 1/2 51 49 52 9/10 
12 9 12 4/5 52 49 53 5/41 
13 12 1/10 16 53 49 54 22/101 
14 12 1/2 16 54 49 55 7/61 
15 12 1/2 16 1/5 55 49 57 4/5 
16 15 1/17 18 56 49 60 1/2 
17 16 18 57 55 7/13 64 
18 16 18 8/13 58 56 1/13 64 
19 16 20 59 57 3/5 64 
20 16 20 21/41 60 57 3/5 64 
21 18 25 61 57 4/5 64 
22 20 25 62 60 4/17 64 4/5 
23 21 39/50 25 63 60 1/2 64 4/5 
24 22 1/2 25 64 60 1/2 64 49/50 
25 24 1/26 25 16/17 65 60 1/2 65 36/53 
26 24 1/5 26 23/41 66 60 1/2 67 3/5 
27 24 1/2 28 4/5 67 64 72 
28 24 1/2 28 9/10 68 64 72 
29 25 32 69 64 72 1/5 
30 25 32 70 64 72 1/5 
31 28 4/5 36 71 64 72 9/10 
32 30 10/13 36 72 64 73 12/13 
33 31 59/82 36 73 71 81/89 81 
34 32 36 74 72 81 
35 32 36 1/10 75 72 81 
36 32 37 3/13 76 72 81 
37 36 40 1/2 77 72 81 
38 36 40 1/2 78 72 81 
39 36 40 1/2 79 77 15/122 84 1/2 
40 36 41 1/41 80 77 23/26 84 1/2 
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Only the second (and easier) of these two formulas will be proved here. 
Newman [4] proved that, for any real s > 0, a closed square of side s can 

contain at most (s + 1)2 lattice points. The result is an easy consequence of 
a theorem of Pick [5], which deals with a polygon whose vertices are at lattice 
points. If the area is A, and there are B lattice points on the boundary and 
C inside, then Pick's theorem states that A = B/2 + C - 1; hence B + C = 
A + B/2 + 1 . Apply this to the convex hull of the set of lattice points in a closed 
square of side s. Here, A < s2 and B < 4s, since the perimeter is at most 4s 
and the lattice points have minimum distance 1. Thus, B + C < (s + 1)2 . It is 
easily seen that equality holds if and only if s is an integer, the vertices are at 
lattice points, and the sides are horizontal and vertical. 

In any rotated plane, the square lxI < j, IyI < j contains at most (2j + 1)2 
lattice points, or at most j(j + 1) basic squares, and equality holds only for 
a rotation through a multiple of 900. No smaller square can contain so many 
lattice points, so ai = j2 when i = j(j + 1). 

The next simplest case is rotation through 450 . Equivalently, we can consider 
supporting lines slanted at 450 . There are j(j+ 1)/2 basic squares with vertices 
in the square lxl + IyI < j, whose sides are at a distance j/v'2 from the origin. 
It follows that 

ai < i2/2 < ,Bi for j(j - 1)/2 < j(j + 1)/2. 
Again, there is often equality on the right for several values of i at the beginning 
of the interval, and on the left at the end. However, it is not true here that there 
is always at least one such equality. More than half of the entries in Table 1 
are supplied by the rotations of 0? and 450 . 

Can the bounds ai- and /3i be attained for some prime p? To compute ai, 
we rotate the plane so as to minimize the maximum ordinate of the vertices of 
a set of i basic squares. This rotation will produce more than one vertex with 
the maximum ordinate. If Ni(p)2/p = ai, then the rotation used is P/lPI, 
which takes P to v/p. Since there is no lattice point of Z[i] between 0 and 
P, in the rotated lattice there will be no lattice point between 0 and Vipi. Thus, 
the distance between two vertices at the maximum height is at least iJpJ. The 
convex hull of the i squares has four-fold symmetry, and has four sides of 
length at least vJpJ. The closest that they can come to the origin is vp/2, when 
the convex hull is a square of side vJjp. Hence, ai > p/4, and so Ni(p) > p/2. 

If N,(p)2/p = /3i, then the rotation P/IPI either takes more than one vertex 
of the squares used to a maximum height, or else places a vertex with maximum 
height on the imaginary axis. The first case again leads to Ni(p) > p/2. In the 
second case, the height is at least vJp-, so /3i > p and Ni(p) > p. 

In any case, we conclude that 

ai < N1(p)2/p < /3 
at least when Ni(p) < p/2, that is, when i < (p - 1)/4. But this means that 

a, < M1(p)2/p < /3 

whenever Mi(p) is defined. 

3. SIXTH ROOTS 

We shall study sets of small sixth roots mod p, where p is a prime with 
p 1_ (mod 6), by finding a connection between multiplying complex numbers 
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by C = e27i/6 and multiplying integers by a primitive sixth root t of 1 mod p. 
Let z be an element of the ring Z[i], and put z = x + y , where x and y 

are integers. Since C2 - + 1 = 0, we see that Cz = -y + (x + y); . Thus, the 
points C nz for n = 0, 1, ... , 5 have the coordinates 

(x, y), (-y, x + y), (-x - y, x), (-x, -y), (y, -x - y), (x + y, -x) 

in the oblique coordinate system being used. Notice that the abscissas and 
ordinates run through the same six numbers ?x, ?y, ?(x + y) . 

Now suppose that z lies on the circle IZ12 = hp, where h is a positive 
integer. Then (x+y )(x+y ) = hp, so x2+xy?y2 = hp. If x -0 (mod p), 
then y 0 (mod p), and hence h 0 (mod p) . In this case, all abscissas and 
ordinates are multiples of p . If x W 0 (mod p), then we can solve 

tx--y (mod p) 

for t. This yields 

0-x2+xy+y2=x2(1-t+t2) (modp), 

and hence t2 _ t+ 1 0 (mod p), so that t is a primitive sixth root of 1 mod p . 
Notice that ty -t2x _ (1 - t)x - x + y (mod p). Thus, 

Cz tz (mod p). 

The points Cnz form the vertices of a regular hexagon. The abscissas or ordi- 
nates constitute sets of sixth roots mod p. 

Will every reduced set of sixth roots mod p be equal, or at least congruent, 
to such a set of ordinates? Unlike the case of fourth roots, we cannot always 
obtain equality, but congruence is possible. Let y be one of the given sixth 
roots. Since p 1_ (mod 6), we can solve 

u2=_ -3y2 (mod p) 

for u, and can then solve 2x + y _ u (mod p) for x. It follows that x2 + 
xy + y2 = 0 (mod p) . Thus, the point z = x + y lies on the circle IZ12 = hp 
for some positive integer h. Draw the inscribed hexagon with a vertex at z. 
The ordinates obtained are congruent to the given sixth roots. 

We shall now show that a congruent value of z can be chosen so that the six 
ordinates are all less than 2p/3 in absolute value. One choice of a fundamental 
region for the group of translations generated by z' = z +p and z' = z +p is 
the hexagon whose sides are the perpendicular bisectors of the segments joining 
0 to the points pCnf. Every element of Z[f] is congruent mod p to a point in 
the hexagon. The circumradius of the hexagon is p/03. Hence, if IZ12 = hp 
for a point in the hexagon, we will have h < p/3. The ordinate y of a point is 
2/V3 times its height, so the maximum y in the hexagon is 2p/3. The same 
is true for the maximum x. Thus, we only need to choose z in the hexagon. 

From this, it follows that a set of sixth roots which are all less than p/3 in 
absolute value is equal to a set of ordinates. For the congruent numbers which 
are less than 2p/3 in absolute value will differ from the given numbers by less 
than p, and hence be equal to them. 
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We want to know what hexagons can be inscribed in the circle Iz 2 = hp. 
We first ask about hexagons in IZ12 = h . If one vertex is at z = x + y ,then 
we need 

(x + yC)(x + yC) = h. 
Each prime power in h must be split into two conjugate factors in Z[f]. It 
is known that 2 and primes q - 5 (mod 6) remain prime in Z[f], that 3 
is equivalent to the square of a prime, and that primes q 1 (mod 6) split 
into two conjugate prime factors which are not equivalent. Thus, 2 and primes 
q 5 (mod 6) must appear in h to an even power. The only choices occur for 
primes q 1 (mod 6). If the power qv occurs in h, then we can decide in 
how many of the v cases we choose the first factor of q as a factor of x + y , 
and then we must choose the second factor in the remaining cases. This gives 
Hl(v + 1) choices for x + y when units are ignored, hence HI(v + 1) inscribed 
hexagons. 

If h is not a multiple of p, then there will be twice as many hexagons in 
I12 - hp, or H1(v + 1) pairs of conjugate hexagons. The early possible values 
of h and the corresponding number of pairs are as follows: 

h =1, 3,4, 7, 9, 12, 13, 16, 19. 
Pairs = 1, 1, 1, 2, 1, 1, 2, 1, 2. 

Conjugate hexagons produce the same set of ordinates. No other hexagon 
can produce this set. Indeed, every set of ordinates has the form {?x, ?y, 
?(x + y)}. One can check that the numbers ?X, ?y, ?(X + y) will be the 
numbers ?x, ?y, ?(x + y) in some order only if X = x or X = -x - y. 

For a hexagon inscribed in the circle IZ12 = hp, the maximum height of 
a vertex lies between (V/3/2) h/p and hp. Hence the maximum ordinate 
in our oblique system lies between hp and (2/3)X/hp. For the intervals 
corresponding to h - 1, 3, 4, 7, 9, 12, the only overlap is for h = 7 and 
h = 9. There are usually two pairs of conjugate hexagons for h = 7 and one 
pair in the other cases. But if h = p = 7, then there is one pair of conjugate 
hexagons and one selfconjugate hexagon. However, this still produces two sets 
of ordinates. 

Corresponding to h < 1, 3, 4, 9, we see that there is exactly one set of or- 
dinates < (2/Vt_)3 , exactly two sets < 2 p/, exactly three sets < (4/1V') p, 
and exactly six sets < (2V3) Vp. But (2/vi) hp < p/3 when p > 12h, so the 
conditions p > 12, 36, 48, 108 guarantee that the ordinates under the bound 
are identical with the reduced sets or sixth roots there. Looking at numerical 
results for the early cases, we have the following conclusions for p 1_ (mod 6): 
There is exactly one reduced set of sixth roots < (2/ 3)#, exactly two sets 
< 2Vp- if p > 7, exactly three sets < (4/Av/)# if p > 13, and exactly six 
sets < (2v3)vp if p > 67. There are actually seven sets under the last bound 
when p = 43, 61, 67. 

For 1 < i < (p - 1)/6, we let Ml(p) be the ith smallest possible maximum 
of a reduced set of sixth roots. This will be studied by its relation to N,(p), 
defined for all i > 1 as the ith smallest maximum of a set of ordinates. 

Sets of ordinates which are < p/3 are identical with reduced sets of sixth 
roots which are <p/3; hence Ml(p) = N,(p) when Ml(p) < p/3 or N,(p) < 
p/3. More generally, sets of ordinates which are < p/2 are among the reduced 



NUMBERS HAVING m SMALL mth ROOTS mod p 401 

sets of sixth roots. Hence, any Ni(p) < p/2 is Mj(p) for some j > i, so that 
Mi(p) < Mj(p) = Ni(p) . On the other hand, if Ni(p) > p/2 and i < (p - 1)/6, 
then we will have Mi(p) < Ni(p). Hence, Mi(p) < Ni(p) whenever Ml(p) is 
defined. 

The prime p =1 (mod 6) splits in the ring Z[f] in the form p = PP, where 
P is a prime in the ring. The hexagons inscribed in I Z 12 = hp are obtained 
from the hexagons inscribed in IZ12 = h by multiplying by P or P. By a basic 
hexagon, we shall mean a hexagon with center at 0 and vertices in the ring. If 
we start with all the basic hexagons, and expand and rotate by the factors P 
and P, we obtain all the hexagons inscribed in circles IZ12 = hp. But we do 
not need both a hexagon and its conjugate, so it is enough to use the factor P. 
This causes an expansion by the factor iJpY and a rotation. Hecke [2, ?9] proved 
that there are primes P of the ring in every sector. Hence, when we consider 
all primes p _1 (mod 6), the possible rotations caused by multiplying by P 
are everywhere dense. 

Let ai be the smallest positive number so that for some rotation of the 
complex plane, there will be i of the basic hexagons lying in the strip y2 < ai. 
Let /3i be the smallest positive number so that for every rotation of the complex 
plane, there will be i of the basic hexagons lying in the strip y2 < 31. Then it 
follows from the above construction that 

ai < Ni(p)2/p < /3, 

and that the bounds ai and /3i are the best that will hold for all values of p. 
As in ?2, the bound ai will be obtained for a rotation of the plane which 

places more than one vertex of the hexagons used at the maximum height. The 
bound /Bi will be obtained in a similar manner, or when there is just one vertex 
with maximum height, but it lies on the imaginary axis (which is now not the 
same as the y-axis). 

In writing a program to compute ai and Bi , it is more convenient to consider 
supporting lines with various orientations, rather than rotating the plane. We 
need to know what possible supporting lines must be examined. This depends 
on knowing what basic hexagons we need to consider. 

Notice that every basic hexagon whose vertices satisfy 

maX(IXl, lYI, |X + yl) < j 

is contained in every basic hexagon whose vertices satisfy 

max(lxl, IYI, Ix + yl) > k, 

provided that k > 4j/3. Indeed, the vertices of the latter hexagon will be at a 
distance > (x/-/2)k from the origin, and hence its sides will be at a distance 
> (x/3/2)2k = 3k/4 > j from the origin. 

There are 3j2 + 3j + 1 lattice points satisfying the first condition, and hence 
j(j + 1)/2 basic hexagons having these points as vertices. Thus, the values of 
ai and 3,i will be found for i < j(j + 1)/2 without using any hexagons from 
the second set. Thus we need only look at the k(k - 1)/2 basic hexagons with 

max(lxl, lYl, Ix +?y) < k - 1, 

where k > 4j/3. Table 2 gives the values of a, and /3, for i < 80, which 
were computed in this way. 
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TABLE 2. Sixth roots 

- ai fi ' aIi i 
1 1 1 1/3 41 80 1/21 85 1/3 
2 3 4 42 81 85 1/3 
3 4 5 1/3 43 81 87 7/31 
4 7 9 44 81 89 17/43 
5 8 1/3 9 1/3 45 81 90 18/19 
6 9 12 46 88 12/13 100 
7 12 16 47 92 8/73 100 
8 14 2/7 16 1/3 48 93 28/57 100 
9 16 17 1/3 49 95 11/43 100 

10 16 21 1/3 50 96 1/3 100 16/21 
11 20 4/7 25 51 96 1/3 104 1/7 
12 21 1/3 25 52 100 108 
13 24 1/7 27 53 100 108 
14 25 28 54 100 109 28/57 
15 25 30 10/13 55 100 112 
16 30 6/19 36 56 108 121 
17 32 1/7 36 57 108 121 
18 33 1/3 36 4/7 58 112 121 
19 36 40 1/3 59 115 2/19 121 
20 36 41 2/7 60 117 121 5/19 
21 36 42 6/7 61 120 1/31 123 6/7 
22 40 1/3 49 62 120 1/7 124 36/37 
23 44 5/31 49 63 120 1/3 128 4/7 
24 45 16/21 49 64 121 133 1/3 
25 48 51 4/7 65 121 133 1/3 
26 48 52 12/37 66 121 133 1/3 
27 49 56 1/3 67 131 11/19 144 
28 49 57 1/7 68 133 1/3 144 
29 56 1/13 64 69 133 1/3 144 
30 56 1/3 64 70 133 1/3 144 
31 59 20/31 65 1/3 71 137 2/7 147 
32 61 5/7 65 1/3 72 141 21/43 147 
33 63 66 9/13 73 142 3/13 147 16/19 
34 64 69 3/13 74 144 149 1/3 
35 64 71 8/31 75 144 151 14/19 
36 64 75 76 144 155 4/7 
37 72 1/39 81 77 144 155 10/13 
38 73 12/13 81 78 144 161 1/3 
39 75 81 79 154 5/7 169 
40 75 82 2/7 80 155 4/7 169 
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There are two special cases which will be discussed. In the unrotated plane, 
there are j(j + 1)/2 basic hexagons with ordinates not exceeding j. It follows 
that 

aii < j2 < g, for j(j - 1)/2 < i < j(j + 1)/2. 
Table 2 shows many cases of equality on the right near the beginning of the 
interval, and on the left near the end. It can be shown that equality holds for 
at least one value of i at each end, except at the beginning of the first interval: 

f] = j2 for i = j(j - 1)/2 + 1, j > 2, 

a1i = j2 for i = j(j + 1)/2. 

Only the second (and easier) of these two formulas will be proved here. 
We first show that, for any real s > 0, a closed regular hexagon of side s 

can contain at most 3s2 + 3s + 1 lattice points. We again apply the theorem of 
Pick [5], as in ?2. It states that if the vertices of a polygon are at lattice points, 
the area is A, there are B lattice points on the boundary and C inside, then 
B + C = A + B/2 + 1. But now we must compute the area A as a multiple of 
the area of a fundamental parallelogram, which is V3/2. In this sense, the area 
of a regular hexagon of side s is 3s2. Apply Pick's theorem to the convex hull 
of the set of lattice points in a closed hexagon of side s. Here, A < 3s2 and 
B < 6s, since the perimeter is at most 6s and the lattice points have minimum 
distance 1. Thus, B + C < 3S2 + 3s + 1 . It is easily seen that equality holds 
if and only if s is an integer, the vertices are at lattice points, and two of the 
sides are horizontal. 

In any rotated plane, the hexagon lxI < j, IYI < j, Ix + yl < j contains 
at most 3j2 + 3j + 1 lattice points, or at most j(j + 1)/2 basic hexagons, 
and equality holds only for a rotation through a multiple of 600. No smaller 
hexagon can contain so many lattice points; hence ai = j2 when i = j(j+ 1)/2. 

The next simplest case is rotation through 300 or 900. Equivalently, we 
can consider vertical supporting lines. Notice that the vertical lines containing 
lattice points are spaced at a distance 1/2 apart. The number of lattice points 
on successive verticals to the right of the imaginary axis having arguments 0 
with -300<6<300 is 0, 1, 1, 1,2,2,2,3,3,3,.... Thesumofthefirst 
j terms of this sequence is equal to 1/3 + 2/3 + ? +j/3, unless j -1 (mod 3), 
when 1/3 must be subtracted. In any case, its value is [j(j + 1)/6]. This gives 
the number of basic hexagons within a distance j/2 of the imaginary axis. 
When the plane is rotated through 900, this corresponds to IYI < j/L. It 
follows that 

a,i < j2/3 < /i for [j(j - 1)/6] < i < [j(j + 1)/6]. 

Again, there is often equality on the right for several values of i at the beginning 
of the interval, and on the left at the end. However, it is not always true here 
that there is at least one such equality. More than half of the entries in Table 2 
are supplied by rotations of 00 and 300 . 

Can the bounds ai and /,i be attained for some prime p ? To compute a1, 
we rotate the plane so as to minimize the maximum ordinate of the vertices of 
a set of i basic hexagons. This rotation will produce more than one vertex with 
the maximum ordinate. If Ni(p)2/p = ai , then the rotation used is P/jPj, 
which takes P to Vfp. Since there is no lattice point of Z[f] between 0 and 
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P, in the rotated lattice, there will be no lattice point between 0 and vp. Thus, 
the distance between two lattice points at the maximum height is at least V' 
The convex hull of the i hexagons has six-fold symmetry, and has six sides of 
length at least Vp-. The closest that they can come to the origin is (V'3/2)v#pi, 
when the convex hull is a regular hexagon of side vJip. This corresponds to an 
ordinate p in the rotated plane. Thus, a,i > p, and so Ni(p) > p. 

If Ni(p)2/p = Bi , then the rotation P/IPI either takes more than one vertex 
of the hexagons used to a maximum height, or else places a vertex with max- 
imum height on the imaginary axis. The first case again leads to Ni (p) > p. 
In the second case, the height is at least -,3 since (v'3Ip)i is a point of the 
rotated lattice, and there is no lattice point between it and 0. The height 3p 
corresponds to an ordinate 2vJip. Hence, /3i > 4p and Ni(p) > 2p. 

In any case, we conclude that 

a, < N,(p)2/p < /i 

at least when Ni(p) < p. It is not hard to show that N,(p) < p just when 
i < (p - 1)/2, but we do not need to know this to draw conclusions about 
Mi(p), since we always have Ni(p) < p when Mi(p) = Ni(p). If p > 9/Ji, 
then N,(p)2 < p,/ < p2/9, so that Ni(p) < p/3 and hence Mi(p) = Nj(p). 
This shows that 

ati < Mi(p)21p < I- 

when p > 9,8i. But we do not need such a strong hypothesis to obtain this 
inequality. Since Mi (p) < Ni (p), the upper bound will hold whenever Ml (p) 
is defined, that is, for p > 6i+ 1 . The lower bound will hold at least for p > 9a,. 
For if it failed, we would have M,(p)2 < pa- < p2/9, SO that M(p) <p/3 and 
hence Mi(p) = Ni(p), which gives a contradiction. Notice that we did not 
conclude from p > 9ai that Mi(p) = Ni(p). 

4. CONNECTION WITH JACOBSTHAL SUMS 

If p is an odd prime and a $ 0 (mod p), then the Jacobsthal sum q$n(a) 
and a related sum / (a) are defined by 

On(a) =ZQ ) (x()a) 

Some basic results about these sums are given by Berndt and Evans [1, pp. 
354-355]. 

If p 1 (mod n), then we see that 

p-l 

Vn (a)-- (xn + a )(P-I 1)/2 
x=O 

p E ((P 1)/2 - nk 
k=O X=O 

[n/2] p 12 
-SE (J(P- )l/2 ) a(p-1)12-j(p-l)/n (mod p), 

J=1 
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since 
PE _T -1 (modp) if s>Oandp- Ils, 

x o t O (mod p) otherwise. 
The formula On (a) = V12n(a) - kgn (a) may be used to derive a formula for 

qn(a). If p 1_ (mod 2n), then we have 

- j ((p - 1)/2n a(p-1)12-j(p-l)/2n (mod P) 

But n(a) is given by the sum of the even-numbered terms, so On (a) is given 
by the sum of the odd-numbered terms. Similar formulas for q)n (a) were given 
by Whiteman [7] and Lehmer [3]. 

In particular, if p 1_ (mod 4), then 

2(a) (p 1) P1)/4 (mod p). 

Since 102(a)I < 2 y-, this shows that 

((p- 1)/2 4 

(p- 1)/4J 
is a number having four fourth roots less than 2v'pi in absolute value. But [1, 
Theorem 4.4] shows that 02(a) is even. So this set of fourth roots is just double 
the smallest set. 

Similarly, if p -1 (mod 6), then 

y/3(a)- ((p - 1)/2 a(P- 1)/6 (mod p). 
(p - 1/ 

Since IV13(a)I < 2#vp , this shows that 

(p- 1)/6 

is a number having six sixth roots less than 2v# in absolute value. From [1, 
Eq. (4.1)], we see that the maximum of I 13(a) I is greater than vA'/ . If p > 16, 
then 2.Jjp < p/2, so that tg3(a) furnishes a reduced set of sixth roots, and it 
is seen to be the next to the smallest. When p = 13, the values of V3(a) are 
?2, ?5, ?7. This yields the reduced set ?2, ?5, ?6, which is again the next 
to the smallest. When p = 7, there is only one reduced set of sixth roots. 

I became aware of the above formula for V13(a) as a result of some corre- 
spondence with Ronald J. Evans in January 1984. This showed that, for each 
prime p 1 (mod 6), there is a set of sixth roots mod p, all of which are 
less than 2p in absolute value. I then wrote a computer program to find all 
such sets of sixth roots for the first 300 such primes. I found that there were 
exactly two such sets for each p > 7, and that the one furnished by V3(a) was 
the next to the smallest. This got me interested in the problem, and led to the 
investigations reported on in this paper. 

5. ROOTS OF HIGHER ORDER 

For other values of m, we shall consider only the problem of finding upper 
bounds for Ml (p), although it is possible to find upper bounds for other Ml (p) 
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as well. I do not know any good lower bounds. We shall prove that, for each 
m, there exists a constant C so that 

Ml (p) < cp I/Xm 

for all primes p 1- (mod m). I believe that the exponent here is the smallest 
possible, but I do not have a proof. 

Let Km be the smallest possible value for C. We shall prove the following 
estimates for Km. 

(A) Km < 2"u, where ,u is the number of distinct odd primes dividing m . 
(B) Km < 3 if m is divisible by only one prime greater than 3. 
(C) Km < 2/v1 if m is divisible by no prime greater than 3. 
As a special case of (A), we see that Km < 1 if m is a power of 2. For 

m = 8, this tells us that Ml (p) < p314. We showed in ?2 that K4 = 1, and 
it is trivial that K1 = K2 = 1. It seems likely that K8 = 1 also, but I do not 
know how to prove that. For p = 4481, we have Ml (p) = 536 > 0.978p3/4, 
and hence K8 > 0.978. 

The situation for eighth roots is not so simple as for fourth roots. It appears 
that there are usually two or more sets of eighth roots which are less than p3!4. 
Here is a summary for the first 150 primes p _1 (mod 8), giving the frequency 
of various numbers of sets of eighth roots which are less than p3!4. 

Number of sets 1 2 3 4 5 

First 50 primes 7 38 4 0 1 

Second 50 primes 8 35 6 1 0 

Third 50 primes 11 34 5 0 0 

Let Dm(x) be the cyclotomic polynomial of order m . If = - e2h/lm , then 

(Dm (X) = r(X_ r 

r 

where r runs through a reduced residue system mod m. If p 1 (mod m) 
and t is a primitive mth root of 1 mod p, then we also have 

(Dm (X) (X - tr) (mod p). 
r 

Since tm(Dm) = 0, it follows that 

r(C - tr) = 0 (mod p). 
r 

In the ring Z[fl, we introduce the ideals Pr = (p, tr- P) for 1 < r < m 
(r, m) = 1. It follows that p divides the product of the Pr. Each two of 
these ideals are relatively prime, since any common factor of Pr and Pr, would 
divide tr - tr', which is prime to p. Thus a number is divisible by p if and 
only if it is divisible by each Pr. This is the result which we use. Since p has 
0(m) prime ideal factors, it follows that these must be the various Pr. 
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Let z be an element of the ring Z[4] . Then 

0(m)-1 
z= E ajCj, 

j=O 

where the aj are integers. We want to find values of z such that 

4z _ tz (mod p). 

Since PI I - t, it will be sufficient to have 

PrIz for 2 < r < m, (r, m)=1. 

As C = tr (mod Pr), we see that 

0(m)-1 
z _ ajtjr (mod Pr). 

j=O 

Thus, to have Pr I z, it will be sufficient to have 

0~(m)-1 

S ajtjr O (mod p). 
J=o 

We want this to be satisfied for 2 < r < m, (r, m) = 1, and we would like the 
Iaj1 to be as small as possible. 

We first consider polynomials 
0(m)-1 

F(x)= E c5xi, 
j=O 

where the cj are integers with 0 < c1 < s. This allows (s + 1)0(m) choices 
for the coefficients. We then consider the values of F(tr) (mod p) . There are 
p((m)-l possible sets of residues. Two of the polynomials will yield the same 
set of residues if (s + 1)0(m) > pO(m)-'. This will be true if we take 

S =Ll-lk/(m)] 

In this way, we obtain two polynomials F1(x) and F2(x) with coefficients in 
[0, s] such that 

Fi(tr) _F2(tr) (mod p) for 2 < r < m, (r, m) = 1. 

Let G(x)=Fl(x)-F2(x). Then 

0$(m)-1 

G(x)= E ajxj, 
J=O 

where the aj are integers with Ia1- < s, and 

G(tr) = O (mod p) for 2 < r < m, (r, m)=1. 

If we put 
0$(m)- 1 

z = G(C) E ajci= 
.=O 
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then Prlz, and we conclude that Cz tz (mod p). It will follow that SkZ _ 
tkz (mod p) for all k . 

We may put 
0(m)-1 

CkZ E akl 4, 

1=0 

where the aki are integers. Here, ao, = al, and every akl is a linear combina- 
tion of the aj with integer coefficients depending only on m . These coefficients 
can be obtained by repeated use of the cyclotomic equation IDm(C) = 0. Since 
each Ia11 < s, we can conclude that every I akll < Cs, where C is a constant 
depending on m. Since CkZ _ tkZ (mod p), we see that akl _ tkai (mod p). 
Thus, the akl with any fixed I and 0 < k < m will form a set of mth roots 
of some number mod p . Recalling the value of s, we see that this proves that 

Ml(p) < CpI-l/0(m). 

We wish to estimate Kmi, which is the smallest possible value of C. We 
start by putting 

0~(m)-1 
k= Z bkl,l, 

1=0 

where the bkl are integers. The value of bkl for a given I depends only on k 
(mod m). For 0 < k < m, 0 < I < 0(m), the coefficients bkl form a matrix 
Bm with m rows and 0(m) columns. The first 0(m) rows form the identity 
matrix I?,(m) of order 0(m)). If m is even, the lower half of the matrix is the 
negative of the upper half. 

We can now determine all of the akl in terms of the aj and the bkl. Indeed, 
we see that 

S akl = zC= ajQj+k 5 aj 5 bj+k,l1, 
1=0 j=O j=0 1=0 

so that 
0~(m)-1 

akl = 5 ajbj+k,l. 
j=0 

But lal < s, so 
0~(m)-1 

Iakll <s S lbj+k,l 
j=0 

For each fixed 1, the numbers akl form a set of mth roots. This leads to a 
bound Lm 

0~(m)-1 
Km < Lm = min max 5 Ibj+k, I 

j=0 

Notice that the sum involves adding the absolute values of any qb(m) consecu- 
tive elements of a column of Bm, considered as a cycle. 
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There is a simple relation between the matrices Bm and Bqm, where q is a 
prime such that qlm. Notice that /(qm) = q$(m). Let l = e25i/qm, so that 

l= 7q Then 
0~(m)-1 

71 kq+r 
bkl -lq+r 

1=0 

for 0 < r < q. This shows that the matrix Bqm is obtained from Bm by 
replacing each element bkl by the matrix bklIq. It follows that Lqm = Lm. 
Thus, Lm depends only on the distinct primes dividing m, and not on their 
multiplicities. 

There is also a simple relation between Bm and B2m when m is odd. Here 
-; is a primitive (2m)th root of 1. Since 

0(m)-1 

(_)k = E (Sl)k+1bk1(-V 5 

1=0 

it follows that the first m rows of B2m have the elements (-1 )k+lbkl . The last 
m rows are the negatives of these. Hence, L2m = Lm . Thus, Lm depends only 
on the distinct odd primes dividing m. 

Since L1 = 1, it follows that Lm = 1 whenever m is a power of 2, and so 
Km < 1 in these cases. We now look at the case m = q, where q is an odd 
prime. Since Cq-1 = -1 - C- C2 _ -_ Cq-2, the matrix Bq consists of the 
identity matrix Iq-1 followed by a row in which all of the elements are -1. 
We can include the elements 1 and -1 among q - 1 consecutive elements of 
each column, considered as a cycle. Thus, Lq = 2, and hence Lm = 2 and 
Km < 2 whenever m is divisible by just one odd prime. So we have proved 
(A) for the cases ,u = 0 and ,u = 1 . A general proof will be postponed to ?6. 

Proof of (B). To show that Km < 3 if m is divisible by only one prime greater 
than 3, it will be sufficient to prove that L3q = 3 when q > 3 is prime. We 
need to consider 

(x3q - 1)(X - 1) _(x2q + Xq + 1)(X - 1) 
(D3q(X) = (xq - 1)(x3 - 1) = x3 - 

_x2q+ _ x2q + Xq+I _ Xq + X-1 

x3-1 
In computing the quotient by long division, only the first two terms in the 
numerator are used until we have passed xq-1 in the quotient. Hence, the 
coefficients (1, -1, 0) repeat in the quotient until this point is reached. But 
the sequence of coefficients of the cyclotomic polynomial is palindromic, and 
xq-1 is the central term. Hence the remaining coefficients may be obtained 
by reflection in the center. Thus, the complete sequence of coefficients is as 
follows: 

(1, 1 0)(q-1)/3, 1, (0, -1 1)(q-1)/3 when q =1 (mod 6), 
( 1, -1, 0)(q-2)/3, 1, - 1, 1, (O, - 1, 1)(q-2)/3 when q -5 (mod 6). 

The first 2q - 2 rows of the matrix B3q form the matrix I2q-2 Let the 
matrix formed by the last q + 2 rows be denoted by B3q . We look first at the 
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case q = 5. Here, 

--1 1 0 -1 1 -1 0 1- 
-1 0 1 -1 0 0 -1 1 
-1 0 0 0 0 -1 0 0 

B15= 0 -1 0 0 0 0 -1 0 

O 0 -1 0 0 0 0 -1 
1 -1 0 0 -1 1 0 -1 
1 0 -1 1 -1 0 1 -1I 

The first and last rows may be read directly from the cyclotomic equation, and 
the remaining rows may be computed from 9 = _S-I _ '4, 5 1O = -1 - 45, 

V11 = -_ -6 4'12 = _'2 - 47, and '13 = -_3 - '8 Notice that the number 
of elements 1 or -1 in the various columns is (5, 3, 3, 3, 3, 3, 3, 5). The 
maximum sum of the absolute values of eight consecutive elements of a column 
of B15 (considered as a cycle) will be larger if we can include all of the elements 
counted above and a diagonal element from I8. This is possible only in the first 
and last columns. Hence, the maxima will be (6, 3, 3, 3, 3, 3, 3, 6). Since 
L15 is the minimum of these, we see that L15 = 3. 

Next, look at the case q = 7. The first two rows of B21 are as follows: 

-1 I 0 -1 I 0 -1 0 1 -1 0 1 
[-1 o 2 1 0 1 -1 -1 1 0 -1 J 

The next five rows contain two matrices -I5 separated by two columns of zeros. 
The last two rows are the second and first rows in reverse order. Notice that the 
number of elements 1 or -1 in the various columns is (5, 3, 3, 5, 3, 3, 3, 3, 
5, 3, 3, 5). We can include a diagonal element of I12 in the first three and 
last three columns of B21 . Thus, the maxima are (6, 4, 4, 5, 3, 3, 3, 3, 5, 4, 
4, 6), and so L21 = 3. 

In general, the first two rows and last two rows of B21 or B15 appear as the 
central portions of the first two rows and last two rows of B3q when q =1 or 
q - 5 (mod 6). The rows are completed by repeating the first three elements 
and last three elements of the central portion. The intermediate rows contain 
two matrices -Iq-2 separated by two columns of zeros. In the first q - 4 and 
last q - 4 columns of B3q, we can include all the elements 1 or -1 of B3q 
and the diagonal element of I2q-2 in a block of 2q - 2 consecutive elements 
of the column, considered as a cycle. This is not possible for the central six 
columns. Thus, the maxima for the various columns will be 

(6 4 4)(q-4)13 5, 3, 3, 3, 3, 5, (4, 4, 6)(q-4)13 

when q 1 (mod 6), and 

(6, 4, 4)(q-5)13, 6, 3, 3, 3, 3, 3, 3, 6, (4, 4, 6)(q-5)13 

when q 5 (mod 6). In either case, we see that L3q = 3. 

6. ROOTS OF HIGHER ORDER (CONTINUED) 

All of the bounds for Km found in j5 were obtained from the inequality 
Km < Lm by computing Lm. We now use other methods to prove (A) and 
(C). Note that (A) gives us, for the first time, a bound for K,, which is easy to 
compute, whereas (C) gives an improved bound for K,, in an interesting case. 
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Proof of (A). This states that Km < 2"u, where ,u is the number of distinct 
odd primes dividing m. As shown in ?5, this is equivalent to Km < Lm when 
u = 0 or u = 1 . It is weaker than Km < Lm when u = 2 and one of the odd 
primes is 3, since Lm = 3 in this case. It is unclear whether it is stronger or 
weaker than Km < Lm in other cases, since Lm is hard to compute. 

We start by proving the following result about roots of unity: If ' = e2nilm, 
then there is a set Sm of qb(m) elements of Z[f] such that every power of 4 is 
a sum of at most 2,u elements of Sm or their negatives, where ,u is the number 
of distinct odd primes dividing m. 

This is trivial for m = 1 . The proof uses induction from m to qm, where 
q is a prime. 

Case 1, when qlm. We obtain the set Sqm by multiplying the elements of Sm 
by the numbers e27rik/qm with 0 < k < q. The new sums are obtained from 
the old ones using a constant multiplier. Hence, the new value of ,u will be the 
same as the old one. 

Case 2, when q t m. If q = 2, then we may take Sqm = Sm, since -C is a 
primitive (2m)th root of 1, so ,u is unchanged. Now suppose that q > 2. If we 
formed a set S' by multiplying the elements of Sm by e27iklq with 0 < k < q, 
then every power of e27rik/qm could be obtained as a sum of 2,u elements of S' 
or their negatives. But S' has too many elements. Instead, we use the sums 

k 

Ok= E e27ijlq 

J=o 

and form Sqm by multiplying the elements of Sm by the numbers U/k with 
0< k <q-1. Since e27iklq is uo when k = 0, uk/-uk-I when 0< k <q-I, 
and -(q-2 when k = q - 1 , we can obtain every power of e27rilqm by adding 
at most 2Ju+1 elements of Sqm or their negatives. Here the new ,u is one unit 
more than the old one. This completes the proof of the result about roots of 
unity. 

As in ?5, we consider polynomials 

0~(m)- 1 

F(x)= cjx 
j=O 

where the cj are integers, but instead of supposing that 0 < cj < s, we restrict 
other integers, which determine the cj, to the interval [0, s]. This gives us 
the same number of polynomials as before, so that the same value of s may be 
used. 

With ' - e2ni/m, we may put 

+~(m)- I 

k F(4) = E CO 

1=0 

where the Ckl are integers. Here, co, = cl, and in general the Ckl are linear 
combinations of the cj, where all linear combinations which we consider are to 
have integer coefficients. The different values of &,k are obtained for 0 < k < 
m. If we use other values of k, they may be reduced mod m. Thus, the Ckl 
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form a matrix with m rows and 0(m) columns. It is clear that any row of the 
matrix determines the entire matrix. 

We shall show that the first column of the matrix also determines the entire 
matrix. If we start with the equation 

F(C) =Co+ CIC+ C2C2 + + co(m) -I;( 

and multiply by 4-i, where 0 < j < /i(m), we see that the constant term of 
the product has the form 

c-j, o = cj + linear combination of co, cl, . , cj}. 

We can therefore solve for the cj as linear combinations of the numbers c1j,o 
with 0 < j < +(m), so these elements of the first column determine the entire 
matrix. 

Any linear relation among the powers Ck with integer coefficients will also 
hold for the corresponding CkF(C) and hence for the Cko. Thus, the result 
about roots of unity shows us that there is a set Tm of ?(m) linear combinations 
of the Cko such that every Cko is a sum of at most 2" elements of Tm or 
their negatives. The elements of Tm are linear combinations of the original 
coefficients cj, and conversely. If we restrict each element of Tm to integers 
in the interval [0, s], then we obtain the required number of polynomials. 

We then choose z and the ak, as in ?5. The akO will be a set of mth roots 
of some number. But the ako are the differences of two choices for the CkO. 
Hence, there will be a set Um of 0(m) integers in [-s, s], obtained as the 
differences of the corresponding elements of the two sets Tm, such that every 
akO is a sum of at most 2" elements of Um or their negatives. It follows that 
Km < 2". 

Proof of (C). This states that Km < 2/V3- if m is divisible by no prime greater 
than 3. Previously, we knew only that Km < 2. 

Let m = 2a3fl. We may suppose that a > 0 and ,B > 0, since we know 
a stronger result when ,B = 0, and the case ae = 0 is equivalent to the case 
a = 1. Thus, we may put m = 6n, and we see that +(m) = 2n and (Fm(x) = 

x2n- xn + 1. 
As in ?5, we consider polynomials 

2n-1 

F(x) = E cjxj, 
j=O 

where the cj are integers with 0 < cj < s, but now we make the additional 
assumption that [s/2] < cj + Cn+j < s + [s/2] for 0 < j < n. Since we have 
imposed additional conditions, we will need a larger value of s than that used 
in ?5. 

For each j, the pair (c;, Cn+j) is confined to a square with two triangles 
removed. The square contains (s + 1)2 lattice points. If s = 2u, the two 
triangles together contain u(u + 1) lattice points, whereas if s = 2u + 1, they 
contain (u + 1)2 lattice points. In either case, the two triangles contain at most 
(s + 1)2/4 lattice points, so that there are at least 3(s + 1)2/4 choices for cj 
and Cn+1, or at least {3(s + l)2/4}n choices for all of the coefficients. 

As in ?5, we consider the values of F(tr) (mod p), where t is a primitive 
mth root of 1 mod p, and 2 < r < m, (r, m) = 1 . There are p2n-1 possible 
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sets of residues. Two of the polynomials will yield the same set of residues if 
{3(s + 1)2/4}n > p2n-1. This will be true if we take s = [(2/13)pl-11/2n]. In 
this way, we obtain two polynomials F1 (x) and F2(x) such that 

Fi(tr)-F2(tr)(modp) for2<r<m, (r,m)=1. 

Let G(x) = F1 (x) - F2(x) . Then 
2n-1 

G(x) E ajx , 
j=O 

where the aj are integers, not all 0, satisfying not only Iaj1 < s for all j, but 
also laj +an+j1 _ s for 0 < j < n. 

As in ?5, we put z = G(C) and conclude that Ckz = tkZ (mod p) for all k. 
Hence, if we write the products ;k z as polynomials in C of degree less than 
2n, the coefficients of a fixed power Cl will form a set of mth roots. It will be 
sufficient to look at the constant terms of the polynomials. 

Since the cyclotomic equation shifts exponents by multiples of n, we need 
only notice that '-n = 1 - Cn and C-2n = -Cn in order to check that the 
constant terms of Q-Jz for 0 < j < 3n are 

aO, a,, a2 , ... , an-1l 

ao + an, a, + a1 a2 + an2, , an +a2n-1 

an ,an+1 ,an+2, .-- , a2n-1- 

The remaining 3n constant terms are the negatives of these. 
Thus, the numbers ?aj for 0 < i < 2n and ?(aj + an+j) for 0 < j < n 

form a set of mth roots mod p. Since none of these exceed s in absolute 
value, we see that Ml (p) < s . Recalling the value of s, we see that this shows 
that Km < 2/X. 

The bound is known to be sharp for m = 3 and m = 6. Numerical evidence 
suggests that it is also sharp for mn = 12. For p = 757, we have Ml (p) = 165 > 
1.1433p3/4; hence K12 > 1.1433 > 0.99(2/v'3). 

Improved bounds can also be obtained in some other cases. However, the 
other bounds which I can prove do not appear to be sharp. The proofs are more 
complicated than for (C), so they will not be included. 
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